Koordinat Cartesius dan Koordinat Kutub Serta Cara Konversinya


Pada materi pelajaran tentang koordinat cartesius dan koordinat kutub ini, banyak manfaatnya untuk kehidupan sehari-hari. Dalam teorinya koordinat cartesius dan koordinat kutub yang bisa saling dikonversikan. 

 



Berikut ini penjelasan mengenai koordinat cartesius dan koordinat kutub serta cara konversi.


Definis dan Manfaat Koordinat Cartesius


Koordinat cartesius merupakan suatu titik yang digambar pada sumbu X dan sumbu Y yang biasanya ditulis dengan P(x,y). Istilah cartesius sendiri ditemukan oleh ahli matematika dari Perancis yang bernama Rene Descartes. Hasil penemuannya inilah gabungan antara aljabar  dan geometri yang kemudian berkembang menjadi ilmu geometri analitik, kalkulus, dan kartografi.

Sistem koordinat cartesius juga dapat digunakan pada dimensi lebih tinggi, misalnya 3 dimensi yang menggunakan sumbu x, y, dan z. Jika pada 2 dimensi digunakan sumbu x dan y, maka sumbu z terletak saling tegak lurus dengan sumbu x dan y.

Manfaat dari koordinat cartesius sendiri banyak digunakan untuk kehidupan sehari-hari. Biasanya koordinat cartesius digunakan pada gambar denah atau peta, sehingga dapat memudahkan dalam mencari sebuah daerah. Selain itu koordinat cartesius juga digunakan dalam bidang penerbangan agar pesawat tidak saling bertabrakan dengan pesawat yang lain.

Koordinat kutub atau koordinat polar merupakan sistem koordinat 2 dimensi, dimana titik bidang ditentukan dari jarak titik yang sudah ditetapkan dan besar sudut ditentukan dari arah yang sudah ditetapkan.

Dari abad ke-8 M, penggunaan koordinat kutub ini dikembangkan untuk menghitung arah dan jarak kiblat dari seluruh penjuru bumi.

Lantas bagaimana hubungan Koordinat Cartesius dan Koordinat Kutub

Hubungan koordinat cartesius dan koordinat kutub serta cara konversi bisa dilakukan dengan menggunakan rumus. Sebelum Anda mengetahui rumus konversi koordinat cartesius ke dalam koordinat kutub ataupun sebaliknya, ada baiknya Anda mengetahui hubungan koordinat cartesius dan koordinat kutub dengan melihat gambar berikut.

Hubungan Koordinat Cartesius dan Koordinat Kutub

Pada gambar diatas dapat dilihat bahwa koordinat cartesius ditujukan titik P (x,y) dan koordinat kutub P(r,ϑ) dan bisa ditentukan dengan rumus:

Pengertian dan Manfaat Koordinat Cartesius

Dengan demikian, jika diketahui koordinat cartesius P(x,y), maka koordinat kutub bisa ditentukan dengan rumus:

Pengertian dan Manfaat Koordinat kutub

Sedangkan untuk mengkonversi koordinat kutub ke dalam koordinat cartesius digunakan rumus:

pengertian koordinat cartesius

Jika diketahui koordinat cartesius P(r,ϑ), maka koordinat kutubnya dapat dinyatakan dengan rumus:

pengertian koordinat kutub

Contoh Soal Konversi Koordinat Cartesius dan Koordinat KutubJ. Jika diketahui titik-titik koordinat sebagai berikut:

  • P (4,4)
  • P (6,1200)

Rubahlah menjadi koordinat cartesius atau koordinat kutub!

Jawab:

Diketahui koordinat cartesius P (4,4), maka digunakan rumus dan perhitungannya sebagai berikut

contoh soal koordinat cartesius dan koordinat kutub

Jadi, koordinat kutub dari P (4,4) adalah

contoh soal koordinat cartesius dan koordinat kutub

Diketahui koordinat kutub P (6,1200), maka perhitungannya adalah

cara konversi koordinat cartesius dan koordinat kutub

Jadi, koordinat cartesius dari P (6,1200) adalah

cara konversi koordinat kutub ke koordinat cartesius


Post a Comment

Previous Post Next Post

Contact Form