Komposisi dan Fungsi Invers

Pengertian Fungsi Komposisi dan Fungsi Invers

Melalui artikel ini Anda diajak untuk memahami konsep Komposisi fungsi dan invers suatu fungsi dan menyelesaikan masalah kontekstual menggunakan Fungsi Komposisi dan Fungsi Invers.

Komposisi atau operasi fungsi secara umum dilakukan untuk menghasilkan nilai tertentu setelah melalui tahapan/prosedur operasi tertentu. Hal ini banyak diterapkan dalam kehidupan sehari-hari, misalkan tata cara mandi tahapan adalah melepas baju baru dilanjutkan dengan mandi, jika dibalik akan berbeda hasilnya. Begitu juga dengan benda-benda di sekitar kita banyak yang pembuatannya tidak sekaligus jadi tetapi pengerjaannya bisa melalui beberapa tahap. Misalnya meja dan kursi pada gambar berikut agar siap dipakai dapat dikerjakan melalui beberapa tahap yaitu tahap pengerjaan pembuatan dan tahap finishingUntuk tahap pembuatanpun melalui beberapa tahap, mulai dari kayu gelodongan (Log), kayu papan, meja – kursi kasar baru finishing.

Untuk membuat mebel berupa meja dan kursi, seorang pengusaha mebel harus mengetahui berapa biaya pembuatan meja dan kursi sampai jadi sehingga biaya tidak berlebih. Pengusaha harus merencanakan dan menghitung satu persatu yaitu biaya pada tahap pengerjaan pembuatan dan biaya pada tahap finishing. Di dalam matematika, biaya dari setiap tahapan dapat dinyatakan dalam suatu fungsi biaya sehingga biaya totalnya merupakan fungsi komposisi dari setiap tahapan.

 

Sebagai contoh berapakah total biaya yang diperlukan untuk menghasilkan 20 set meja kursi dengan kualitas yang bagus dari seorang tukang kayu yang dapat menghasilkan meja dan kursi yang bagus melalui dua tahap, yaitu tahap pembuatan dan tahap finishing. Apabila biaya yang diperlukan pada tahap pembuatan adalah Rp750.000,00 per set, dan biaya pada tahap finishing adalah Rp150.000,00 per set. Apabila banyaknya meja dan kursi yang dihasilkan adalah x set dan biaya yang diperlukan pada tahap pembuatan adalah dengan persamaan 𝑓(𝑥) = 750 000 𝑥 + 15000, sedangkan biaya pada tahap finishing dengan persamaan 𝑔(𝑥) = 15000𝑥 + 10000. Dengan menggunakan operasi fungsi komposisi maka biaya total pembuatan 20 set meja-kursi dapat dihitung.



Fungsi Komposisi 


Dari dua jenis fungsi f(x) dan g(x) kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan dengan "o" (komposisi/bundaran). fungsi baru yang dapat kita bentuk dari f(x) dan g(x) adalah:
(g o f)(x) artinya f dimasukkan ke g
(f o g)(x) artinya g dimasukkan ke f

Contoh Soal 1:
Diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...

Jawab:
(f o g)(x) = g dimasukkan ke f menggantikan x
(f o g)(x) = 3(2x)-4
(f o g)(x) = 6x - 4

(g o f)(x) = f dimasukkan ke g menggantikan x
(g o f)(x) = 2(3x-4)
(g o f)(x) = 6x-8

Syarat Fungsi Komposisi
Contoh Soal 2:
Misal fungsi f dan g dinyatakan dalam pasangan terurut :
f : {(-1,4), (1,6), (3,3), (5,5)}
g : {(4,5), (5,1), (6,-1), (7,3)}
Tentukan :
a.    f o g                                     d.  (f o g) (2)
b.    g o f                                     e.  (g o f) (1)
c.    (f o g) (4)                             f.  (g o f) (4)
Jawab :
Pasangan terurut dari fungsi f dan g dapat digambarkan dengan diagram panah berikut ini
a.    (f o g) = {(4,5), (5,6), (6,4), (7,3)}
b.    (g o f) = {(-1,5), (1,-1), (3,3), (5,1)}
c.    (f o g) (4) = 5
d.    (f o g) (2) tidak didefinisikan
e.    (g o f) (1) = -1

Sifat-sifat Fungsi Komposisi
Fungsi komposisi memiliki beberapa sifat, diantaranya:
Tidak Komutatif
(g o f)(x) = (f o g)(x)
Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x)]
Fungsi Identitas I(x) = x
(f o I)(x) = (I o f)(x) = f(x)


Fungsi Invers

Apabila fungsi dari himpunan A ke B dinyatakan dengan f, maka invers dari fungsi f merupakan sebuah relasi dari himpunan A ke B. Sehingga, fungsi invers dari f : A -> B adalah f-1: B -> A. dapat disimpulkan bahwa daerah hasil dari f-1 (x) merupakan daerah asal bagi f(x) begitupun sebaliknya.

Cara menenukan fungsi invers bila fungsi f(x) telah diketahui:
Pertama
Ubah persamaan y =  f (x) menjadi bentuk x sebagai fungsi dari y
Kedua
Hasil perubahan bentuk x sebagai fungsi y itu dinamakan sebagai f-1(y)
Ketiga
Ubah y menjadi x [f-1(y) menjadi f-1(x)]

Contoh 1:
Tentukan ivers dari fungsi   f(x) = 2x + 6
Pembahasan:
f(x) = 2x + 6
misal y = 2x + 6
2x = y – 6
x = ½ y – 3
dengan demikian f-1(y) = ½ y – 3 atau f-1(x) = ½ x – 3

Contoh 2:
Tentukan Invers dari fungsi y = 2x + 3/ 4x + 5
Pembahasan:
y = 2x + 3/ 4x + 5
y (4x + 5) = 2x + 3
4yx + 5y = 2x + 3
4yx – 2x = 3 – 5y
x (4y-2) = 3 – 5y
x = 3 – 5y / 4y-2
atau
x = -5y +3 / 4y – 2
jadi dengan dimikian f-1 (y) = 2x + 3/ 4x + 5 = -5y +3 / 4y – 2
atau f-1(x) = -5x +3 / 4x – 2

Untuk lebih jelas silahkan Anda mempelajari Diktat dibawah ini!

Post a Comment

Previous Post Next Post

Contact Form